
(e.g., Toxodontidae, Interatheriidae, Mesotheriidae, and Hegeto-
theriidae). This repeated innovation was likely selected to withstand
high dental wear during mastication (17, 27). It was also assumed to
be related to the successive orogenic, volcanic, and erosive phases of
the Andean Cordillera starting from the Late Paleocene (approxi-
mately 57 Ma) (28), which involved subsequent deposition of
abrasive detritic particles on plants (16, 29, 30).
The comparative ecology and life history of the different

groups of notoungulates remains, however, poorly understood.
Here, we provide data allowing a more complete overview of the
convergent crown height increases and associated dental onto-
genetic changes in notoungulates to better understand their
evolution with respect to environmental variations taking place
in South America from the Late Paleocene onwards. For this
reason, we studied and compared the evolutionary patterns of
dental growth (Fig. 1A) and eruption (Fig. 1B) in different clades
of notoungulates along with estimated body mass in the context
of a consensual and well-resolved phylogeny. We also put these
original data into a geological framework to estimate the varia-
tions in ecological and life history traits that may be related to
major geological and climatic events during that time.

Results and Discussion
Convergent Increase of Dental Crown Height in Notoungulates. The
parsimony reconstruction of character evolution indicates that
notoungulates acquired high-crowned cheek teeth at least three
times during their evolutionary history (Fig. 2). Specialization
toward ever-growing dentitions (i.e., hypselodonty) then con-
vergently spread among the four last-existing monophyletic
families of notoungulates (Toxodontidae, Interatheriidae, Mes-
otheriidae, and Hegetotheriidae). As is evident from the exam-
ination of phylogenetic distributions (Fig. 2), there is no
significant correlation between crown height and estimated body
mass in notoungulates. Such a lack of a significant correlation is
exemplified by the Toxodontidae, and most of Mesotheriidae,
which show larger body masses than the Hegetotheriidae and

Interatheriidae, whereas they have similar variations regarding
crown height. As a result, it can be considered that a crown
height increase is not directly influenced by body mass, as was
previously suggested for some notoungulates (31) and other
mammals (9).
Because they lived in environments on which soil minerals

(dust and grit) were likely deposited to an important degree due
to volcanic activity (16, 17, 29), high-crowned teeth may have
allowed notoungulates to cope with the ingestion of such exter-
nal abrasive particles that strongly wear teeth during chewing. In
the presence of external abrasives, wear rates may have also been
enhanced by an increase in the pressure and intensity of chewing,
especially given a diet including many fibrous plants with a low
nutritive value (e.g., grass and grass-like plants, some shrubs)
(27). This increase might also be related with digestive abilities
assumed to be less efficient in notoungulates than ruminants,
but closer to those of their extant relatives (e.g., horses, rhinos),
for which the amount of food intake is higher and the chewing
effort greater (17). It is important to point out that the pres-
ence of abundant external abrasive particles would have espe-
cially affected animals eating a greater proportion of plants
close to the soil (i.e., herbaceous to shrubby plants). That may
have been the case of some South American mammals, such
as notoungulates, small argylagoid marsupials, and ground-
dwelling caviomorph rodents, which convergently acquired
high-crowned dentitions (17).

Striking Convergent Modifications of Dental Eruption Patterns and
Life History Traits. Data on the modes of dental eruption show a
very similar distribution to crown height on the cladogram, with a
reversal from third molars erupting last to third molars erupting
faster than permanent premolars in the four late diverging
families (Fig. 2). The details of their eruption sequence slightly
differ from one clade to another (Fig. 2). Indeed, in Tox-
odontidae, the eruption of third molars occurs only before the
eruption of the last permanent premolars (P4), as observed in

Fig. 1. Main variations of dental growth and eruption observed in notoungulates. (A) Dental crown height states (Colbertia magellanica AMNH49873,
Pseudhyrax sp. MLP61-IV-9–1, Paedotherium bonaerense MNHN.F.MHR45). (B) Dental eruption states (Trachytherus alloxus MNHN-BOL-V 009027, Micro-
typotherium choquecotense MNHN-BOL-V 003349). P, premolars; M, molars.
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horses (11). In contrast, the third molar erupts before the
eruption of most permanent premolars (P2–P4) in Typotheria
(i.e., the Hegetotheriidae, Interatheriidae, and Mesotheriidae), a
pattern known in many specialized herbivores, including rumi-
nants (11).

Interestingly, it has been proposed that both horses and ru-
minants show a relative fast pace of growth (2) associated with
faster molar eruption (11). A faster eruption of the third molars
compared with permanent premolars was first observed in a
mesotheriid by Townsend and Croft (32), who proposed a faster
growth for this notoungulate, although they acknowledged not
having enough data to further substantiate their observations.
More recently, a few craniodental ontogenetic series were de-
scribed in Mesotheriidae and Toxodontidae (33), which enabled
study of genera showing skulls at different states of dental
eruption (Fig. 2, Trachytherusand Mesotherium; Adinotherium
and Nesodon). Interestingly, the entire set of molars erupted
much faster compared with cranial growth in the late diverging
mesotheriid genus,Mesotherium, than in the earliest known ge-
nus, Trachytherus. More precisely, the eruption of all of the
molars was completed in specimens ofMesotheriumpresenting a
skull that was only 50–60% of the adult skull size (34). In con-
trast, the first molars were not yet erupted at this stage inTra-
chytherus, and the eruption of all molars was completed only in
adults (33). In toxodontids, the comparison ofAdinotheriumand
Nesodonshows similar trends, but to a lesser extent, given that

there is only a slight discrepancy in dental eruption between
these taxa (Fig. 2). InAdinotherium and Nesodon, the molars
were all erupted at 100% and 85% of the adult skull size, re-
spectively (33). In addition, the first molars also erupted earlier
in Nesodon(60% of the adult skull size) than inAdinotherium
(70% of the adult skull size). Thus, both the faster eruption of
molars compared with permanent premolars, and precocious
eruption of first molars compared with skull growth may suggest
a faster life history in some late diverging clades of notoungu-
lates (Fig. 2), especially compared with similar trends observed
in extant ruminants, horses, and some primates (10–12).

It is worth mentioning that body size (or body mass) is known
to constrain life history evolution in mammals to a large degree
(2, 4, 12). In that context, the interpretation of the sequence and
timing of dental eruption into pace of growth patterns should be
considered with caution. However, body mass appears to play a
reduced role regarding ontogenetic dental changes in notoun-
gulates (Fig. 2). Moreover, in specialized taxa, such as herbi-
vores, and in unstable environments, life history traits were
shown to be more dependent on ecology than on body size (2, 4).
This may also hold true for notoungulates. In addition to these
putative changes in life history, the repeated acquisition of a
faster molar eruption in notoungulates can also be related to a
faster acquisition of a full set of teeth to rapidly allow an efficient
dentition for plant comminution.

Fig. 2. Comparison of the distributions of crown height states, body mass, and modes of dental eruption on the composite tree of notoungulates ( Material
and Methods provide details). Red branches emphasize the repeated codistributions of ever-growing cheek teeth and faster eruption of molars in the
highlighted clades of notoungulates. Gray and orange branches represent the other states for each character depicted in the captions. Black branche s
represent an absence of data for the respective character. P, premolars; M, molars. Names of Plesiotypotherium achirense , “ Plesiotypotherium ” minus,
Trachytherus spegazzinianus , and Trachytherus alloxus were shortened. *Taxa for which timing of dental eruption relative to skull growth is known and
discussed in the text (33, 34).
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