
Journal of Evolutionary Biology, 2025, XX, 1–14
https://doi.org/10.1093/jeb/voaf003
Advance access publication 17 January 2025
Research Article

Walking or hanging: the role of habitat use for body shape 
evolution in lacertid lizards
Pablo Vicent-Castelló1,2,3, , Anthony Herrel4,5,6,7, , D. James Harris1,2, Antigoni Kaliontzopoulou3

1CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
2BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
3Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Institut de Recerca de la Biodiversitat (IRBio), Universitat de 
Barcelona, Barcelona, Spain
4Département Adaptations du Vivant, Bâtiment, UMR 7179 MECADEV C.N.R. S/M.N.H.N., d’Anatomie Comparée, Paris, France
5Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
6Department of Biology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
7Naturhistorisches Museum Bern, Bern 3005, Switzerland

Abstract 
Differences in habitat use impose ecological constraints which in turn lead to functional and morphological differences through adaptation. In 
fact, a convergent evolutionary pattern is evident when species exhibit similar responses to similar environments. In this study, we examine 
how habitat use influences the evolution of body shape in lizards from the family Lacertidae. We divided our species into two categories: 
ground-dwellers and climbers, which encompasses the verticality and horizontality aspects of the habitat. We performed phylogenetic com-
parative analyses employing 186 species and seven linear morphological traits. Our results show contrasting patterns between head and limb 
shapes, which are considered distinct functional blocks. We observed differences in forelimb proportions, but not in hindlimb length, contrary to 
what was documented in other lizard groups, demonstrating a novel axis in the limb–locomotion–habitat relationship in this family. In addition, 
a clear effect of habitat use on head shape was detected. We observed that climbing species present on average flatter heads than ground-
dwelling species, as well as different evolutionary trajectories. These findings suggest the complex interplay between habitat use and morpho-
logical evolution in lizards, highlighting how distinct selective pressures drive divergent adaptations in different functional traits.
Keywords: phylogenetic comparative methods, convergence, adaptation, Ornstein–Uhlenbeck, phenotypic evolution

Introduction
Understanding how species respond and adapt to their envi-
ronment is central in evolutionary biology (Arnold, 1998; 
Collar et al., 2010; Elstrott & Irschick, 2004; Irschick & 
Garland, 2001; Kaliontzopoulou et al., 2010; Openshaw & 
Keogh, 2014; Outomuro et al., 2013). Habitat use imposes 
ecological restrictions and demands that may drive mor-
phological and performance adaptations. Consequently, 
adaptation to similar environmental niches can result in evo-
lutionary convergence (Collar et al., 2014; Stayton, 2006), as 
seen in exemplary evolutionary cases such as cichlid fishes 
of East African lakes (Muschick et al., 2012) or spider eco-
morphs along the Hawaiian Islands (Blackledge & Gillespie, 
2004). Convergence, examined under the ecomorphological 
paradigm (Aguilar-Puntriano et al., 2018; Collar et al., 2014; 
Friedman et al., 2016; Stayton, 2015)—where form and 
function (i.e., whole-organism performance, physiology) are 
the reflection of the adaptation to a specific ecological niche 
(Arnold, 1983)—, underscores the close relationship between 
functional performance, body size and shape, which reflects 
adaptation to specific ecological niches and environmental 
pressures (Herrel et al., 2002).

In particular, the shape of the body plays an essential role 
in the way organisms interact and survive in their environ-
ment. As such, body shape adaptations to the habitat have 

been recorded in various animal groups, including fishes 
(Friedman et al., 2020, 2021; Kolmann et al., 2020; Larouche 
et al., 2020; Martinez et al., 2021), dragonflies (Outomuro et 
al., 2013), frogs (Moen et al., 2016; Stepanova & Womack, 
2020), salamanders (Baken & Adams, 2019), and lizards 
(Bedford & Christian, 1996; Thompson & Withers, 2005; 
Gray et al., 2019). Among these, lizards have been extensively 
used as model organisms in ecomorphology because they are 
very widespread and they utilize a great diversity of habitats 
(e.g., terrestrial, aquatic, semiaquatic, arboreal, fossorial, and 
desertic). Remarkably, among all the habitats that lizards 
occupy, there is a recurrent trend whereby ground-dwelling 
species transit and adapt to a type of habitat that requires 
extensive climbing (arboreal or saxicolous) (Collar et al., 
2010, 2011; Melville & Swain, 2003; Revell et al., 2007). In 
this new habitat, selection on functional performance results 
in convergent evolution (Revell et al., 2007). The contrast 
between ground-dwelling and climbing environments revolves 
around how species navigate the structural dimension of 
the habitat. Saxicolous and tree-climbing species navigate 
upright and exploit the vertical axis of the habitat, whereas 
ground-dwellers predominantly use the horizontal axis of the 
habitat. Differences in habitat exploitation imply different 
biomechanical requirements species need to fulfil. Species that 
move vertically need to cope with the effect of gravity, jump 
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between adjacent rocks or trees, move along vertical surfaces 
with sufficient efficiency to escape from predators or use small 
crevices and tree cavities to hide from them (Arnold, 1998; 
Revell et al., 2007; Vanhooydonck & Van Damme, 1999). By 
contrast, species that move horizontally, tend to favour speed 
to escape from predators or to feed on prey in open areas, as 
well as, a large visual field to better notice their surroundings 
when moving close to the ground (Herrel et al., 2002; Losos, 
1990; Vanhooydonck & Van Damme, 2003). These functional 
requirements are expected to be reflected in the correspond-
ing morphological traits (Goodman et al., 2008; Herrel et al., 
2002). Indeed, many climbing lizards present shallower heads 
(Openshaw & Keogh, 2014; Paluh & Bauer, 2017; Revell et 
al., 2007) and shorter limbs, both beneficial in maintaining 
the centre of mass close to the substrate (Huie et al., 2021; 
Vanhooydonck & Van Damme, 1999, 2001). However, oppo-
site patterns are also observed in some lizard groups regard-
ing limb (Goodman et al., 2008; Revell et al., 2007) and head 
proportions (Kohlsdorf et al., 2001; Kulyomina et al., 2019; 
Miles, 2014; Zaaf & Van Damme, 2001). This discrepancy 
may arise because factors beyond habitat verticality, like sub-
strate type or element broadness, could have influenced limb 
and head evolution (Aerts et al., 2000; Revell et al., 2007).

Ground-dwelling species, which occupy relatively simple 
and more open environments, generally present more robust 
heads and longer hindlimbs to favour sprint and speed over 
manoeuvrability (Herrel et al., 2002; Losos, 1990), as well 
as differences in fore to—hindlimb ratios (Goodman et al., 
2008), but once again exceptions also exist (Jaksić et al., 
1980; Kohlsdorf et al., 2008). Together, these contrasting 
patterns suggest that maybe there is no overarching trend in 
morphological adaptations to the use of vertical relative to 
horizontal substrates in lizards. Furthermore, these findings 
emphasize that the overall body shape does not always uni-
formly adapt in response to specific habitats. Different body 
components, such as the head, limbs, and trunk, serve distinct 
functional roles in ecological tasks and biomechanical func-
tions, responding variably to environmental factors including 
habitat use but also, feeding, mating, and territory defence 
(Edwards et al., 2013; Herrel et al., 2002).

Among lizards, the family Lacertidae, with over 360 
species (Uetz, 2023), is a particularly suitable system to 
investigate the morphological implications of differential 
habitat-axis utilization. Through this transcontinental radi-
ation, Lacertids have colonized an extraordinary number 
of ecosystems throughout the Old World. Even though they 
present a highly conservative morphology (Arnold, 1987, 
1989), several macro- and micro-evolutionary studies have 
examined functional performance and morphology to under-
stand phenotypic evolution in this group. Although the sin-
gle study that investigated the consequence of habitat use 
on general body shape at the macroscale in lacertid lizards, 
could not establish an evolutionary effect (Vanhooydonck & 
Van Damme, 1999), other findings hint at the complexity of 
the relationship between morphological diversity and habi-
tat use. Indeed, climbing and ground-dwelling lacertids pres-
ent discrepancies in terms of locomotor performance (Van 
Damme et al., 1998; Vanhooydonck & Van Damme, 2003; 
Vanhooydonck et al., 2000), the tactics to boost speed (stride 
length vs. stride frequency) (Vanhooydonck et al., 2002), and 
the number of vertebrae and their function in manoeuvring 
(Van Damme & Vanhooydonck, 2002). However, those dif-
ferences do not translate into limb proportion differences or 

a trade-off between horizontal-running and climbing abilities 
(Aerts et al., 2000; Vanhooydonck & Van Damme, 1999, 
2001). Nevertheless, a recent study found differences in claw 
morphology between ground-dwelling and vertical-climbing 
lacertid species (Baeckens et al., 2020). This supports the 
hypothesis of limb adaptations to habitat in this group and 
provides further evidence that the use of vertical surfaces may 
favour the evolution of morphological traits associated with 
climbing (Hipsley et al., 2014). In contrast with these mixed 
patterns of limb shape evolution, several studies have estab-
lished evolutionary links between head shape and microhab-
itat both within and across lacertid species, where climbers 
present flatter and narrower heads (Arnold, 1998; Gomes et 
al., 2016; Kaliontzopoulou et al., 2010, 2012, 2015; Urošević 
et al., 2013). Furthermore, species inhabiting arid environ-
ments have been shown to exhibit convergent evolution of 
cranial structures (Edwards et al., 2012; Harris et al., 1998; 
Hipsley & Müller, 2017).

These results highlight the need for a comprehensive 
approach to clarify how the contrast between using predom-
inantly vertical versus horizontal habitats has contributed 
to body shape evolution in lacertid lizards. Here, we use the 
most complete Lacertidae phylogeny to date (Garcia-Porta et 
al., 2019), a comprehensive morphological dataset and state-
of-the-art phylogenetic comparative tools to investigate the 
tempo and mode of body shape evolution as a response to 
these two structural habitat use axes, as well as adaptation 
trends using a comparison between Ornstein–Uhlenbeck 
(OU) vs Brownian motion models of evolution (Cressler 
et al., 2015). The implementation of appropriate phyloge-
netic comparative methods is imperative in untangling the 
unknowns of body shape evolution in the family Lacertidae, 
as well as significantly updating the existing background on 
this topic. To this end, we divide species into two categories: 
ground-dwelling and climbing. We expect climbing species to 
have evolved towards having shorter limbs and longer trunks 
on the one hand, and flattened, longer, and narrower heads 
on the other, to cope with the functional demands that ver-
tical habitat imposes. We also predict that ground-dwelling 
species will present longer hindlimbs and a lower forelimb 
over hindlimb ratio, which are advantageous for sprinting 
in open areas. In addition, we expect a more robust body 
with taller heads as it is expected to be favourable in ground-
dwelling habitats. We also anticipate ground-dwelling species 
to exhibit a higher diversity of forms, since they are adapted 
to a more diverse habitat what are expected to have less evo-
lutionary constraints in comparison to habitats occupied by 
climbing species. Finally, we test for convergent evolution 
within each of the two habitats, with the prediction of a lower 
level of convergence in ground-dwelling species. Assuming 
that climbing habitat imposes high selective pressures on 
morphological evolution, we predict a convergent pattern for 
species that move vertically..

Material and methods
Morphology and habitat use
We collected linear measurements of a total of 956 adult male 
specimens for 186 lacertid species, using different datasets 
(specimens from collections and field campaigns) covering 
52.2% of the described species and including at least one 
species per genus of the family (Uetz, 2023). We measured 
eight ecologically and evolutionarily relevant linear features 
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in order to capture general body shape, understood as the 
relative proportions of different body parts. Those measure-
ments are: snout-vent length, head length, head width, head 
height, mouth length, hindlimb length, forelimb length, and 
trunk length (Figure 1). All measurements were taken to the 
closest 0.01 mm, employing electronic callipers and following 
the protocol in (Kaliontzopoulou et al., 2007), and we com-
puted the mean value of each morphological trait per spe-
cies (Supplementary Table S1). For downstream analyses, we 
log10-transformed all data and used snout-vent length as a 
measure of body size to obtain size-corrected linear biometric 
measurements as the residuals from a phylogenetic regression 
using all species (Revell, 2009), as implemented in the func-
tion phyl.resid in the package “phytools” (Revell, 2012). This 
method allows to correct by size morphological data while 
accounting for species relatedness, which has been shown to 
avoid downstream type I error when working with phyloge-
netic comparative methods (Revell, 2009).

To explore the role of habitat use in the evolution of body 
shape, we divided the species into two groups: ground-dwellers 

and climbers. To classify species into one of the two habitat 
use groups, we conducted an extensive qualitative analysis, 
employing bibliographic review, consulting specific articles 
as well as general sources such as the reptile database (Uetz, 
2023) and the IUCN red list (IUCN, 2022), among others 
(Supplementary Table S2). We classified as ground-dwelling 
lacertid species that spend most of their time on the ground, 
utilizing the horizontal axis of their habitat, independently 
of the type of substrate. The majority of Acanthodactylus, 
Eremias, Lacerta, and Timon species, among others, were 
placed in this category. This group also includes species that 
may use other structures such as rocks or shrubs on occasion, 
but not predominantly. The second type, climbers, refers to 
species that mainly employ the vertical axis of the habitat. 
Climbers are lizards that spend most of their time climbing 
and moving over vertical surfaces such as trees, shrubs, and 
rocky surfaces. We collapse all types of habitats that imply 
movements in the vertical axis, including both saxicolous and 
tree-climbing species, since lacertid species mainly use trunks 
rather than branches, which means that species primarily use 

Figure 1. Generalized lacertid lizard outline (left) illustrating the seven morphological measurements considered and distribution of the log-transformed 
and size-corrected data coloured by habitat use category. The density curves with black outlines and asterisk are those that differed significantly in the 
phylogenetic ANOVAs.
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broader surfaces. Therefore, both types of climbing structures 
are predicted to impose similar functional demands on lacer-
tid morphologies (Foster et al., 2018; Tulli et al., 2011). These 
animals can use the ground in some circumstances, such as 
when escaping from predators, but it is not their preferred 
habitat. Species of the genera Gastropholis, Takydromus, 
Algyroides, Dalmatolacerta, some Podarcis, and others were 
considered as members of this category.

Comparative analyses
To perform comparative analyses, we used the most com-
plete and dated phylogeny of lacertid lizards published to 
date (Garcia-Porta et al., 2019) (Supplementary Figure S1). 
This dated phylogeny combines genomic and genetic data and 
reconstructs the evolutionary relationships of 246 species (see 
Garcia-Porta et al., 2019 for further information). We dis-
carded the tips for which we had no morphological data for 
downstream morphological analyses (but see further on for 
how habitat use was reconstructed using the full phylogeny).

Phylogenetic signal
To explore morphological patterns of body shape evolution, 
we first evaluated the degree of phylogenetic signal in size-
corrected morphological traits, by calculating Pagel’s λ statis-
tic (Pagel, 1999) using the phylosig function in the R package 
“phytools” (Revell, 2010). This parameter is a measure of 
the scaling of the phylogeny that is necessary to better fit the 
data to a Brownian motion model. We opted for this statistic 
due to its good performance and low level of type I error 
(Münkemüller et al., 2012). Values near 0 represent phyloge-
netic independence, whereas values closer to 1 indicate that 
traits are as similar as expected under a Brownian motion 
model of evolution. To test if the λ values were significantly 
different from 1, we performed a likelihood ratio test between 
the lambda model and a Brownian motion model. The code to 
perform the comparison is available in the Github repository 
(). We would expect to find lower phylogenetic signal values 
for putative convergent traits, since high levels of phyloge-
netic signal would mean species resemble each other more 
because of their shared ancestral history rather than other 
external factors.

Morphospace occupancy
In order to describe morphological variation and morpho-
space occupancy across species we performed two principal 
component analyses (PCAs), where we separately considered 
two functional blocks of traits: head relative dimensions and 
body-limb shape (i.e., considering size-corrected traits of low 
collinearity, as described above). Then, we plotted the first 
and second components and projected the phylogeny onto 
PC space to form a phylomorphospace (Sidlauskas, 2008) 
using the function geom_phylomorpho implemented in the 
“deeptime” package (Gearty, 2023). Posteriorly, convex poly-
gons were created for climbers and ground dwellers and for 
both PCAs using the chull function of the same R-package. To 
evaluate whether morphological disparity differed between 
habitat groups, as expected if ground dwellers are under less 
restrictive selective pressures in comparison to climbers, and 
therefore displaying higher morphological disparity, we used 
the function morphol.disparity in the package “geomorph” 
(v.4.0.5) (Adams et al., 2022; Baken et al., 2021) and we 
tested its significance using a permutation procedure of 999 
iterations.

Phylogenetic analyses of variance
To investigate if habitat use had an effect on the diversifica-
tion of body shape in lacertid lizards, we first performed two 
phylogenetic multivariate analyses of variance (pMANOVA) 
to examine the effect of habitat use on head shape and the 
shape of the locomotor apparatus. We fitted linear models 
using the corresponding morphological traits per functional 
groups using the function lm.rrpp and manova.update imple-
mented in the package “RRPP” (Collyer & Adams, 2018, 
2023). Subsequently, in order to investigate whether habi-
tat use has an effect on individual morphological traits, and 
whether significant differences exist in the fore-hind limb 
ratio between climbers and ground dwellers, we performed 
phylogenetic analysis of variance (pANOVA). We used each 
of the morphological traits separately as the dependent vari-
able and habitat use as a predictor in the first case; and we 
compared forelimb length vs hindlimb length, with habitat 
use as an interactive effect in the second case. We fitted linear 
models and evaluated their significance using residual ran-
domization (RRPP), as implemented in the function lm.rrpp 
of the R package “RRPP” (Collyer & Adams, 2018, 2023).

Mode of evolution
To investigate how habitat use has influenced the tempo and 
mode of shape evolution, we first used stochastic character 
mapping as implemented in the function make.simmaps of the 
package “phytools” (Revell, 2012) to reconstruct the ances-
tral states of habitat preference across the phylogeny. Here, 
we used the complete phylogeny (before trimming it down to 
the species for which morphological data were available) to 
obtain a more accurate reconstruction. We fitted discrete trait 
evolutionary models based on two unordered state transition 
matrices (Supplementary Table S3). The first assumes tran-
sitions of equal frequency between trait states (equal rates: 
ER), while the second allows a different rate for each transi-
tion (all-rates-different: ARD). Based on the log-likelihoods of 
these models, we identified ARD as the best model to describe 
habitat use evolution in lacertids (Supplementary Table S4; see 
also Results section). Using this model, we produced 1,000 
simmaps to explore transitions between states and infer which 
state was the most probable ancestral habitat use for this liz-
ard family.

Subsequently, we used the OUwie package (Beaulieu et al., 
2012) and 100 simmaps randomly selected out of the 1,000 
simulations to fit and compare different evolutionary models. 
First, we fitted a single-rate Brownian motion (BM1) that rep-
resents the null hypothesis of non-directional morphological 
evolution under a single evolutionary rate (σ2), we also fitted 
a multiple rate Brownian motion (BMS), which allows for 
different evolutionary rates for ground-dwellers and climbers. 
Then, we fitted a second group of models that included a new 
parameter, θ. This parameter indicates the evolutionary ten-
dency or optima of the data and has been used as evidence of 
adaptation (Cressler et al., 2015). We fitted a single-optimum 
OU, which has the same evolutionary peak (θ) for both habi-
tats categories (OU1); a multiple optima Ornstein–Uhlenbeck 
(OUM), that allows for different evolutionary peaks for 
ground-dwellers and climbers; and finally, a multiple optima 
and multiple rate Ornstein–Uhlenbeck (OUMV), which 
allows both the optima and the evolutionary rate to vary 
depending on habitat use. Among OU-variant of the mod-
els, there is a parameter α, which represents the strength of 
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the pull towards the evolutionary peak, that can be allowed 
to vary. We decided not to consider models that encompass 
variation in this parameter (i.e., OUMA and OUMVA) as the 
estimation of this parameter can affect others parameter esti-
mations and can lead to model non-identifiability (Cooper et 
al., 2016; Friedman et al., 2021; Kaliontzopoulou & Adams, 
2016). After fitting the models, we discarded model runs that 
presented negative eigenvalues, as these produce unreliable 
estimates (Beaulieu et al., 2012; Kolmann et al., 2020; Price 
& Hopkins, 2015). To compare model fit, we used the mod-
ified Akaike information criterion (AICc). When more than 
one model was equally supported (ΔAICc < 2), we chose 
the model with the least number of parameters as the best-
supported model. Note that models with similar AICc values 
often provide qualitatively similar results because the same 
mode of evolution can be characterized by different sets of 
parameters (Grabowski et al., 2023). Finally, we generated 
97.5% confidence intervals for all model parameters of the 
best-fit model using parametric bootstrapping as implemented 
in the OUwie.boot function in OUwie package (Beaulieu et 
al., 2012). Due to computational limitations, we selected 10 
random simmaps and performed 10 bootstrap replicates for 
OUMV and OUM models, while we performed 100 boot-
strap replicates for BM1 and OU1 models.

Convergence
Finally, to test for convergent evolution among species belong-
ing to each habitat type, we used pattern-based estimates to 
quantify the number of lineages that evolved independently 
towards the same phenotypic space. We used the package “con-
vevol” (Stayton, 2015) to obtain different statistics which mea-
sure phenotypic similarity using distance-based approaches and 
we employed the statistics Ct1, Ct2, Ct3, and Ct4. This method 
is an updated version of the previous C1-4 (Stayton, 2015), 
to detect convergent patterns, but in this case, accounting for 
the time between tips. This method measures the phenotypic 
distance between species in specific moments in a time-scaled 
phylogeny. Ct1 measures the distance between two lineages in 
a specific time, as a proportion of the distance between the tips 
and the longest distance between the shared evolutionary trajec-
tory. Ct2 captures the absolute magnitude of convergent change. 
Ct3 and Ct4 are standardized versions of Ct2, which divide this 
value by the total amount of phenotypic change in the conver-
gence group (Ct3) or the total amount of phenotypic change in 
the entire clade (Ct4). We ran the analyses separately for each 
trait and in a multivariate manner for the two functional blocks 
(e.g., head and limbs) and both for ground-dwelling and climb-
ing species. We created coherent groups by collapsing species to 
account only for the independent instances of the appearance of 
the character of interest (e.g., climbing and ground-dwelling), in 
order to avoid pairwise comparisons between sister taxa with 
the same state, as recommended by the authors (Grossnickle et 
al., 2024). We performed the analyses with 50 simulations using 
BM as an evolutionary model to test if each of the calculated Ct 
values was greater than expected by chance. The values of this 
parameter can range from negative to positive values, indicat-
ing divergence or convergence respectively (Grossnickle et al., 
2024).

Results
We found that all morphological variables presented signif-
icant values of phylogenetic signal (Supplementary Table 

S5). Values for all variables ranged from 0.7 to 0.9, with all 
of them significantly different from 1, except for hindlimb 
length, which was not statistically distinguishable from 1.

The PCA performed with the head relative dimensions 
accounted for 74.75% of morphological variation in the first 
two PC axes (Figure 2A, Supplementary Table S6a). The first 
principal component (PC1) is related to head relative size, 
since the magnitude and direction of the components are very 
similar, with head width being the most strongly correlated. 
The second principal component (PC2) captured a contrast 
between head length and mouth length, on one side, and head 
height and head width, on the other. The second PCA, focus-
ing on the locomotor apparatus (limbs and trunk) (Figure 2B, 
Supplementary Table S6b), accounted for 89.2% of the vari-
ance in the first two PC axes. The first component (PC1), cap-
tured a negative correlation between trunk and limb relative 
lengths, correlating positively with the limbs and negatively 
with the trunk (Supplementary Table S6b). Across both trait 
morphospaces, the multivariate morphological disparity did 
not differ significantly between ground-dwellers and climbers 
(Supplementary Table S7).

The phylogenetic MANOVAs on functional shape blocks 
(head vs. body) showed that climbing and ground-dwelling 
species differed when considering the multivariate set of 
head morphological traits, but not the locomotor apparatus 
(Supplementary Table S8). When investigating the effect of 
habitat use on individual morphological traits, we found that 
head height and forelimb length were significantly different 
between climbers and ground-dwellers (Table 1). Climbers 
present flatter heads and longer forelimbs than ground-
dwellers. Finally, we observed no significant difference 
between habitat groups in forelimb to hindlimb ratio.

The ancestral state reconstruction of habitat occupation 
indicated that the most probable ancestral state for the root 
of the family Lacertidae was a climber, being reconstructed in 
86% of the stochastic character maps (Figure 3). Accordingly, 
we found that the most common transition was from climb-
ing habitat to ground-dwelling habitat. Regarding the mean 
total time spent in each state, we observed that the ground-
dwelling state presented almost twice the time spent in the 
phylogeny than the climbing state (Supplementary Table S9).

Examination of evolutionary models of body shape evo-
lution revealed different evolutionary regimes for different 
morphological traits (Supplementary Table S10). For mouth 
length and hindlimb length, the best-supported model was a 
single-rate Brownian motion. For forelimb length and trunk 
length, the best-fit model was a single-optimum Ornstein–
Uhlenbeck (OU1). For head height and head width the best-
fit model was a multiple optima Ornstein–Uhlenbeck. Finally, 
head length followed a multiple-rate and multiple-optima 
Ornstein–Uhlenbeck model (OUMV). Examination of model 
estimates revealed that ground-dwelling species are evolv-
ing towards larger values of head length, head height, and 
head width as compared to climbers (Table 2). In addition, 
ground-dwellers exhibited higher evolutionary rates than 
climbers for head length (Table 2).

Finally, when testing for convergence, according to 
Ct1-4 results, we found no significant signs of conver-
gence or divergence neither in climbing nor in ground-
dwelling species considering head morphology. Similarly, 
we did not find significant levels of convergence or diver-
gence in ground-dwelling or climbing limb proportions 
(Supplementary Table S11).
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Figure 2. Phylomorphospace for the functional morphological trait blocks of head relative dimensions (A), and trunk and limb relative lengths (B). Each 
point represents a single species coloured by the correspondent habitat category. Illustrations represent the specific morphology in that part of the 
morphospace. A1: Nucras lalandii; A2: Holaspis guentheri; B1: Nucras lalandii; B2: Meroles anchietae.
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Discussion
How habitat use influences morphological evolution through 
demands on functional performance has been a major theme 
in evolutionary biology (Garland & Losos, 1994). In this 
study, we explored morphological responses to the require-
ments imposed by different habitats depending on the 
structural axis along which species move. We investigated 
the distinction between lacertid lizards that predominantly 
use vertical vs. horizontal habitat axes considering two  
morpho-functional trait blocks: the head and the locomo-
tor apparatus. Although macroevolutionary inferences have 
been made using about half of the species in the Lacertidae 
family, our results suggest mixed effects of habitat use on 
body shape macroevolutionary patterns. We did not find sup-
port for the broad hypotheses of limb dissimilarities based 
on biomechanical expectations regarding the locomotor 
apparatus (Kaliontzopoulou et al., 2010). Instead, we only 
uncovered differences in the length of the forelimbs between 
climbers and ground-dwellers, in a direction opposite to our 
expectations. By contrast, habitat use had a major effect on 
the evolution of head shape in lacertids, where we found 
morphological adaptations to climbing, in accordance with 
those previously reported from other groups (Openshaw & 
Keogh, 2014; Revell et al., 2007), as well as adaptations to 
navigate in the horizontal axis of the habitat. Indeed, we 
showed that the morphological features of the head follow 
different evolutionary trajectories for climbers and ground 
dwellers.

Lacertid ancestry
The preferred habitats of the assumed closest relatives of 
lacertids had led researchers to hypothesize that the com-
mon ancestor of this family was a ground-dweller (Arnold, 
1998). Indeed, the families Teiidae and Gymnophtalmidae 
have been considered the sister clades of the Lacertidae, 
and both present the typical ground-dwelling lifestyle (Vitt 
& Pianka, 2004; Zweifel, 1998). Our results, nonetheless, 
based on an ML-based reconstruction of habitat use, point 
in a different direction, and support the hypothesis that lacer-
tids evolved from a climbing ancestor (Figure 3). This does 
not seem unreasonable, as species diversification of teiids and 
gymnophthalmids, on the one hand, and of lacertids, on the 
other, has occurred in very distant regions (New World vs Old 
World). Indeed, although these families share part of their evo-
lutionary history (Vitt & Pianka, 2004) they diverged from 
each other 180 million years ago (Zheng & Wiens, 2016). 
Moreover, a recent phylogenomic inference of the deeper 
relationships of reptiles indicates that the sister clade of the 
Lacertidae is the Amphisbaenia, a group of limbless lizards 
(Zheng & Wiens, 2016) which presents mostly burrowing 
behaviours (Longrich et al., 2015). As such, the diversification 
of the Lacertoidea seems to have been dominated by frequent 
and radical ecological, morphological, and performance 
changes, making the estimation of the ancestral habitat use 
of lacertids from their relatives questionable. Nevertheless, a 
ground-dwelling common ancestor for amphisbaenians and 
lacertids, with an early adaptation to a climbing habitat for 

Table 1. Results of the phylogenetic ANOVAs conducted to test for differences across habitats in size-corrected morphological variables and to examine 
if the relationship between fore and hindlimb lengths varied between climbers and ground-dwellers (fore-limb ratio). d.f.: degrees of freedom; R2: R 
squared; F: F-value; Z: Z-score. p-values are based on 1,000 residual permutations and significant p-values (at α = 0.05) are highlighted in bold.

d.f. SS MS R2 F Z p-value

Head length Habitat 1 0.001 0.001 0.009 1.599 0.927 0.182

Residuals 184 0.165 0.001 0.991

Total 185 0.166

Head width Habitat 1 0.001 0.001 0.019 3.488 1.442 0.074

Residuals 184 0.066 0.000 0.981

Total 185 0.067

Head height Habitat 1 0.012 0.012 0.109 22.469 3.314 0.001

Residuals 184 0.100 0.001 0.891

Total 185 0.112

Mouth length Habitat 1 0.000 0.000 0.002 0.396 −0.019 0.522

Residuals 184 0.061 0.000 0.998

Total 185 0.061

Forelimb length Habitat 1 0.001 0.001 0.027 5.131 1.851 0.024

Residuals 184 0.049 0.000 0.973

Total 185 0.050

Hindlimb length Habitat 1 0.000 0.000 0.005 0.860 0.424 0.360

Residuals 184 0.087 0.000 0.995

Total 185 0.088

Trunk Habitat 1 8.69E-05 8.69E-05 0.002 0.427 −0.001 0.515

Residuals 184 0.037 0 0.998

Total 185 0.038

Fore-hind limb ratio HLL * Habitat 1 0.000 0.000 0.006 1.862 0.978 0.170

Residuals 182 0.028 0.000 0.562

Total 185 0.050
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the Lacertidae ancestor, followed by a secondary occupation 
of the ground, also seems to be a plausible scenario.

Interestingly, the ancestral state reconstruction for lacer-
tids suggests different dynamics of evolutionary transitions 
between habitat types than that observed in other lizards. A 
recurrent trend whereby species shift from a ground-dwelling 
to a climbing habitat has been implicitly observed in several 
groups (Collar et al., 2010, 2011; Melville & Swain, 2003; 
Revell et al., 2007). In these transitions, morphology under-
goes specific modifications to cope with vertical requirements 
(Collar et al., 2010, 2010; Goodman et al., 2008; Revell et al., 
2007). However, the directionality, frequency, and implications 
of these transitions have never been addressed in detail but 

have rather been a tacit product of morphological analyses. In 
these studies, most groups present a ground-dwelling ancestor 
and, therefore, adaptation typically occurs towards climbing. 
By contrast, our results highlight that, in lacertids, transitions 
from the vertical to the horizontal axis have occurred at least 
six times more often than the reverse (Supplementary Table 
S9). Climbing habits are known to be biomechanically quite 
demanding and restrictive (Revell et al., 2007). As such, novel 
morphological adaptations to ground-dwelling could be act-
ing as an evolutionary dead-end (Day et al., 2016). Such cases 
of the reverse transition—from climbing to the ground—have 
also been observed in particular species in other lizard groups 
(Collar et al., 2010), but they otherwise seem to be quite rare, 

Figure 3. Evolution of habitat use in lacertid lizards reconstructed on the most recent phylogeny of the family with 246 species (obtained from Garcia-
Porta et al., 2019) using the all-rates-different (ARD) transition matrix. The fraction of assignment to each state over the 100 simulations is represented 
by pie charts on the internal nodes. The circles at the tips represent the species’ habitat use. The age of the node is presented. For further information, 
see Garcia-Porta et al. (2019).
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making lacertids a unique example of this kind of evolution-
ary shift in habitat use.

Effects of habitat on phenotypic evolution
Demands of the climbing habitat type include elements such 
as the effect of gravity when climbing, vertical movements, 
jumping between adjacent rocks or branches, and hiding in 
small crevices when escaping from predators. These require-
ments are expected to affect performance and morphology 
(Arnold, 1983). Although previous studies found no mor-
phological differences in limb proportions in lacertid lizards 
at different scales (Cordero et al., 2021; Gomes et al., 2016; 
Vanhooydonck & Van Damme, 1999), we identified signif-
icant variation in forelimb length but not in hindlimbs, the 
hindlimb to forelimb ratio, or trunk length, between climb-
ers and ground-dwellers (Table 1). Although this result does 
not follow biomechanical expectations (Kaliontzopoulou et 
al., 2010), it is not striking for this group. Previous results 
illustrate a complex and not straightforward relationship in 
habitat–performance–morphology in lacertid lizards (Gomes 
et al., 2016). Accordingly, differences in limb length and body 
morphology associated with locomotor performance have 
not been observed (Aerts et al., 2000; Gomes et al., 2016; 
Vanhooydonck & Van Damme, 1999, 2001). In this study, we 
show that, when accounting for the phylogeny, climbing spe-
cies present slightly longer forelimbs than ground-dwelling 
ones, which could be linked to locomotor mode. Nevertheless, 
the assessment of this relationship would require the analysis 
of quantitative performance data (e.g., speed, sprint speed, 
and climbing speed). In addition, other selective pressures 
could be acting on forelimb length evolution, such as the 
broadness of the surface (Revell et al., 2007) or the quantity 
of rocks in the habitat (Goodman et al., 2008).

In contrast with this limited differentiation of the loco-
motor apparatus, our results support the predictions made 
regarding the evolution of head shape in response to habitat 
use (Table 1). Climbing species present the typical flat head 
which helps them to, first, maintain the centre of mass of the 
body closer to the surface when climbing and, second, hide 
in small refugia when escaping from predators (Gomes et al., 
2016; Goodman et al., 2008; Kaliontzopoulou et al., 2015; 
Kohlsdorf et al., 2008; Openshaw & Keogh, 2014; Revell et 
al., 2007). Since climbing species have the tendency to escape 
towards “known structures” such as holes and small crevices, 
and usually remain in the surroundings of the shelters (Diego-
Rasilla, 2003; Vanhooydonck & Van Damme, 2003), escape 
behaviour is known to be a major determinant of morpholog-
ical diversity in this group (Gomes et al., 2016; Husak & Fox, 
2006). Therefore, natural selection would favour flatter heads 
for climbing lizards, which matches the observed patterns 
(Figure 1) and is also supported by evolution towards a lower 
evolutionary optimum for this morphological trait (Table 2). 
Ground-dwelling species, by contrast, present taller and more 
robust heads, which can be advantageous in horizontal habi-
tats to have a broader vision to detect predators.

In addition to this apparently adaptive differentiation 
between climbers and ground-dwellers, where most head 
morphological traits follow a directional evolutionary model 
with two different adaptive optima (i.e., OUM, OUMV; Table 
2, Supplementary Table S10), we also found evidence that 
habitat use has influenced the tempo of head shape evolu-
tion. Indeed, despite a lack of global differentiation in raw 
head shape disparity, when taking phylogeny into account we Ta

b
le

 2
. E

st
im

at
ed

 p
ar

am
et

er
s 

an
d 

co
nfi

de
nc

e 
in

te
rv

al
s 

(2
.5

%
, 9

7.
5%

) o
f 

th
e 

be
st

 e
vo

lu
tio

na
ry

 m
od

el
 (s

ee
 S

up
pl

em
en

ta
ry

 T
ab

le
 S

10
) fi

tt
ed

 t
o 

ea
ch

 o
f 

th
e 

se
ve

n 
m

or
ph

ol
og

ic
al

 t
ra

its
 e

xa
m

in
ed

. θ
: e

vo
lu

tio
na

ry
 

op
tim

a;
 α

: p
ul

l t
ow

ar
ds

 t
he

 e
vo

lu
tio

na
ry

 o
pt

im
a;

 σ
2 : 

ev
ol

ut
io

na
ry

 r
at

es
. D

iff
er

en
t 

pa
ra

m
et

er
s 

fo
r 

cl
im

be
rs

 (C
L)

 a
nd

 g
ro

un
d-

dw
el

le
rs

 (G
D

) a
re

 in
cl

ud
ed

 w
he

n 
th

e 
m

od
el

 a
llo

w
s 

th
e 

pa
ra

m
et

er
s 

to
 c

ha
ng

e 
be

tw
ee

n 
ha

bi
ta

t 
us

e 
ca

te
go

rie
s.

M
or

ph
ol

og
ic

al
 t

ra
it

B
es

t 
m

od
el

θ (C
L

)
θ (G

D
)

α
σ2 (C

L
)

σ2 (G
D

)

H
ea

d 
le

ng
th

O
U

M
V

0.
05

51
 (

0.
03

31
,0

.0
66

5)
0.

05
33

 (
0.

02
54

,0
.0

67
2)

0.
19

30
 (

0.
10

71
,0

.3
50

3)
3.

39
E

-0
3 

(1
.7

1E
-0

3,
4.

74
E

-0
3)

5.
45

E
-0

3 
(3

.1
2E

-0
3,

1.
21

E
-0

2)

H
ea

d 
w

id
th

O
U

M
−0

.0
24

5 
(−

0.
08

23
, −

0.
02

00
)

0.
01

90
 (

0.
01

09
, 0

.0
87

3)
0.

03
24

 (
0.

02
21

,0
.0

43
3)

6.
41

E
-0

4 
(4

.2
6E

-0
4,

8.
38

E
-0

4)

H
ea

d 
he

ig
ht

O
U

M
−0

.0
88

3 
(−

0.
20

17
, −

0.
05

91
)

0.
04

13
 (

0.
04

03
–0

.1
71

9)
0.

03
91

 (
0.

02
21

, 0
.0

52
8)

1.
08

E
-0

3 
(7

.2
0E

-0
4,

1.
44

E
-0

3)

M
ou

th
 le

ng
th

B
M

1
–

–
3.

27
E

-0
4 

(2
.5

7E
-0

4,
3.

98
E

-0
4)

Fo
re

lim
b 

le
ng

th
O

U
1

0.
00

70
 (

−0
.0

66
7,

 0
.0

65
3)

0.
01

84
 (

0.
00

83
, 0

.0
39

9)
3.

90
E

-0
4 

(2
.8

4E
-0

4,
 5

.6
3E

-0
4)

H
in

dl
im

b 
le

ng
th

B
M

1
–

–
4.

71
E

-0
4 

(3
.7

1E
-0

4,
5.

92
E

-0
4)

T
ru

nk
O

U
1

−0
.0

16
4 

(−
0.

04
96

, 0
.0

12
2)

0.
02

75
 (

0.
01

82
, 0

.0
50

8)
3.

35
E

-0
4 

(2
.6

4E
-0

4,
4.

99
E

-0
4)

D
ow

nloaded from
 https://academ

ic.oup.com
/jeb/advance-article/doi/10.1093/jeb/voaf003/7959727 by M

useum
 d'histoire naturelle user on 30 January 2025

http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voaf003#supplementary-data
http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voaf003#supplementary-data


10 Vicent-Castelló et al.

found that head length indeed evolved under different evolu-
tionary rates (Table 2). Interestingly, the evolutionary optima 
estimated under this model for climbers and ground-dwellers 
are very similar, which translates into a lack of significant dif-
ferences between present phenotypes (Figure 1). The apparent 
discrepancy between the evolutionary model in head length 
(OUMV) and the expected morphological output from it (i.e., 
no significant differences between groups in the phylogenetic 
ANOVA), may be a result of assuming a BM evolutionary 
model for ANOVAs, which is different from the best model. 
In terms of evolutionary rates, though, ground-dwelling spe-
cies seem to have followed a faster pace of evolution for this 
morphological trait. This is expected as the ground-dwelling 
category encompasses species that explore a wide variety of 
structural habitats (deserts, forests floors, grasslands, dunes, 
etc.), potentially affecting the diversification of this morpho-
logical trait (Collar et al., 2010). This pattern also matches 
the expectation that climbing species may present a narrower 
adaptive peak, and therefore a lower phenotypic rate, due to 
the restrictive nature of moving vertically (Collar et al., 2010; 
Kaliontzopoulou et al., 2015).

Convergence
Convergence can emerge due to constraints, random changes, 
or natural selection (Stayton, 2015). A typical convergent pat-
tern of many lizard groups is observed in body shape among 
species adapted to climbing (Goodman & Isaac, 2008; Losos, 
1992; Openshaw & Keogh, 2014; Revell et al., 2007), while 
a few cases of ground-dwelling convergence have also been 
reported (Gray et al., 2019; Huie et al., 2021). These con-
vergence patterns can be performance-mediated, since the 
same ecological requirements in a specific habitat can lead 
to convergence in performance and also trigger convergence 
in morphology (Edwards, 2011). While this phenomenon 
was found in other lizard groups (Elstrott & Irschick, 2004; 
Losos, 1990), we did not identify indices of convergence in 
lacertid lizards.

Observing our results and contrary to expectations, we 
did not find any signs of convergence in the locomotor appa-
ratus, neither in climbing nor in ground-dwelling lacertids 
(Supplementary Table S11). Nevertheless, taking into account 
the complex relationship between locomotor morphology and 
performance in this group (Gomes et al., 2016), the absence 
of limb convergence is far from surprising. It seems that loco-
motor performance and body shape are not responding in 
concert with similar selective pressures in lacertids. Rather, 
the selective pressures imposed by habitat may be acting on 
different performance and morphological aspects (Baeckens 
et al., 2020). For example, when examining the morpho-
space occupancy of the species (Figure 2B), we observe that, 
although both groups share the majority of the morphospace, 
some ground-dwelling species appear to be evolving towards 
different directions. One group, located in the left part of 
the morphospace, exhibits longer trunks and shorter limbs, 
while another group, in the right part, shows the opposite 
pattern with shorter trunks and longer limbs. This varia-
tion may be related to substrate type and escape strategies 
of ground-dwellers. Species on the right, such as those of 
the genera Meroles, Eremias, and Acanthodactylus are typi-
cally associated with sandy environments and are adapted to 
fast running (Edwards et al., 2016; MartÍn & López, 2003). 
In contrast, species like Nucras and Atlantolacerta, found 
on the opposite extreme of the morphospace, are typically 

associated with rocky habitats and use short bursts of run-
ning to hide among rocks as their escape strategy (Huey et al., 
1984, pers. observ). This suggests that, rather than climbing 
or ground-dwelling movement alone, other selective pressures 
may be influencing locomotor morphology in lacertid lizards.

In agreement with these results, our predictions regard-
ing convergence in the shape of the head were neither con-
firmed by Ct measurements (Grossnickle et al., 2024). We 
expected both climbing and ground-dwelling heads to pres-
ent significant levels of convergence, since the biomechanical 
constraints, stronger in climbing environments, would drive 
head morphology in the same direction for both groups. 
However, no signs of convergence were found in lacertid 
lizards (Table 2; Supplementary Table S11). This result is 
supported by the high levels of the phylogenetic signal of 
different morphological traits (Supplementary Table S5), 
which suggest that species resemble each other because of 
their shared evolutionary history rather than due to con-
vergence processes. Moreover, disparity analyses showed no 
significant differences between the groups, further support-
ing the absence of convergence. Since neither group is con-
verging towards a specific part of the morphospace, thereby 
reducing its disparity, no significant disparity differences 
were observed between both groups.

In contrast, we found that head-related traits follow a 
multi-optima Ornstein–Uhlenbeck model, which has been 
used as evidence of adaptation. In this case, ground-dwelling 
and climbing species evolve in different directions, each 
reaching an optimal head shape for their respective habitat 
use. However, the strength of selection exerted by each struc-
tural habitat does not seem sufficient to drive head shape 
evolution to be similar for all species occupying a specific 
habitat, as observed in other groups (Goodman & Isaac, 
2008; Gray et al., 2019; Huie et al., 2021; Losos, 1992; 
Openshaw & Keogh, 2014; Revell et al., 2007). The level of 
specialization may be an important factor to consider, as in 
lacertid lizards, we observe highly specialized climbing and 
ground-dwelling species that may be driving morphological 
trends towards distinct optima. However, there is also a large 
group of species that fall between these two “putatively fully 
converged” morphologies (Figure 2A). Therefore, although 
the habitat imposes an adaptive regime on ground-dwelling 
and climbing heads, species may not have had enough time 
to converge. Alternatively, our classification of habitat use 
diversity in lacertids, which is quite complex, into two dis-
tinct categories, may underlie these results. Although obtain-
ing continuous habitat use data for such a wide number and 
diversity of species is at present not practically possible, the 
possibility remains that a future reanalysis of our data using 
continuous habitat-use data may further enhance evolu-
tionary inferences. Nevertheless and more likely, according 
to our results, species are adapting to the same structural 
habitat (e.g., climbing or ground-dwelling) but are modi-
fying different aspects of head shape, resulting in different 
morphologies that perform the same function (Thompson 
et al., 2017). Indeed, it has been demonstrated that head 
shape is involved in several ecological activities that can act 
on its evolution such as feeding, mating, or territory defense 
(Gomes et al., 2018; Herrel et al., 2001; Verwaijen et al., 
2002). These ecological constraints could also affect head 
shape evolution. For example, while a climbing environment 
should drive heads to be narrower, sexual selection on males 
may act in the opposite direction to enhance bite force, 
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thereby increasing mating success or success in male-male 
competition (Kaliontzopoulou et al., 2012). This highlights 
how different parts of morphology, although participating 
in the same functional task, can be selected differently to 
fulfil various ecological functions.

Conclusion
In conclusion, our findings highlight how lacertid lizards 
present specific but clear ecomorphological adaptations. 
They also show how similar selective pressures can act dif-
ferently and produce different effects over different parts of 
an organism’s body (Herrel et al., 2002). Indeed, the pres-
ence of different evolutionary rates and modes depending on 
the traits, highlights how different body regions can evolve 
differently even when they form part of the same functional 
block (Smith et al., 2016). Because of habitat-specific pres-
sures, climbers and ground-dwelling species exhibit distinct 
head evolutionary trends, which become tangible when 
looking at head height differences. By contrast, the relation-
ships between habitat, locomotor performance, and limb 
morphology remain complex for this lizard family. One ele-
ment that appears to blur the relationship between form and 
function is the presence of a few highly specialized forms in 
response to habitat use among lacertids (Aerts et al., 2000). 
We find such species in both habitat categories. For example, 
Dalmatolacerta oxycephala, Hellenolacerta graeca, or species 
of the genus Gastropholis are extensively adapted to vertical 
locomotion. On the other hand, species within genera such 
as Acanthodactylus or Eremias are found strictly in hori-
zontal, open habitats. However, the bulk of lacertid lizards 
consists of species that, while displaying a clear preference 
for one habitat over another, may use other structures, such 
as the genus Podarcis. In this regard, the level of ecological 
specialization appears to be a determinant factor in morpho-
logical diversification and may also influence the detection 
of convergence in this study, since the broad habitat-use cat-
egories we have used may obscure real convergent patterns 
within the Lacertidae family. Lacertid lizards do not present 
a locomotor form clearly adapted to one habitat or another, 
instead, an all-purpose Bauplan appears to be selected for 
(Kaliontzopoulou et al., 2015). To meet particular locomotor 
requirements, some groups have developed specific structures, 
such as fringed toes in sand dwellers like some species within 
Acanthodactylus, prehensile tails in species of Gastropholis, 
rib expansion in species of Holaspis and longer tails in spe-
cies of Takydromus (Hipsley et al., 2014). Thus, as is the 
case in geckos, these morphological structures may be blur-
ring differentiation into distinct ecomorphs (Kulyomina et 
al., 2019; Zaaf & Van Damme, 2001). Ultimately, our study 
underscores that lacertid lizards embody an adaptable form, 
capable of both specialized and generalized responses to eco-
logical pressures, contributing to a nuanced understanding of 
ecomorphological evolution in reptiles.
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