
The relationship between cranial morphology, bite
performance, diet and habitat in a radiation of dwarf
chameleon (Bradypodion)

JESSICA M. DA SILVA1,2*, LIZA CARNE3, G. JOHN MEASEY4, ANTHONY HERREL5,6

and KRYSTAL A. TOLLEY1,7

1Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7,
Claremont, 7735, Cape Town, South Africa
2Department of Conservation Ecology & Entomology, Stellenbosch University, Private Bag X1,
Matieland, 7602, Stellenbosch, South Africa
3Department of Zoology, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth,
6031, Eastern Cape Province, South Africa
4Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Natural
Sciences Building, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa
5D�epartement d’Ecologie et de Gestion de la Biodiversit�e, Centre National de la Recherche
Scientifique/Mus�eum National d’Histoire Naturelle, 57 rue Cuvier, Case postale 55, 75231, Paris
Cedex 5, France
6Ghent University, Evolutionary Morphology of Vertebrates, K.L. Ledeganckstraat 35, B-9000 Gent,
Belgium
7Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602,
Stellenbosch, South Africa

Received 15 October 2015; revised 1 March 2016; accepted for publication 1 March 2016

Many animals show unique morphological and behavioural adaptations to specific habitats. In particular,
variation in cranial morphology is known to influence feeding performance, which in turn influences dietary
habits and, ultimately, fitness. Dietary separation is an important means of partitioning ecological niches and
avoiding inter- and intraspecific competition. Consequently, differences in dietary resources may help explain
phenotypic divergence in closely-related species occupying different habitats, as well as sexual dimorphism. We
test this hypothesis on five phenotypic forms of a recent radiation of dwarf chameleons (Bradypodion) that vary
extensively in habitat use and cranial morphology. By examining stomach contents, the dietary composition of
each phenotypic form is compared to investigate potential differences in feeding strategies. Overall, chameleons
in the present study exhibit considerable dietary overlap (at both inter- and intraspecific levels), indicating that
diet is not a major driver of variation in cranial morphology within this radiation. However, the stomachs of
closed-canopy females were found to contain more prey items than male stomachs, possibly indicating that
females require a greater caloric intake than their male counterparts. © 2016 The Linnean Society of London,
Biological Journal of the Linnean Society, 2016, 00, 000–000.

KEYWORDS: Bradypodion melanocephalum – Bradypodion thamnobates – lizard – performance – rep-
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INTRODUCTION

Morphological and behavioural traits are shown to
co-vary with environmental features in a wide array

of species (Schluter & D, 2000; Herrel et al., 2008;
Dumont et al., 2009; Losos & Mahler, 2010; Alexan-
dre et al., 2014). In lizards, because the head is
involved in many ecologically and socially relevant
activities (i.e. feeding, mating, and aggressive inter-
actions), morphology and function (i.e. bite*Corresponding author. E-mail: jessica.m.dasilva@gmail.com
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performance) have been widely investigated aiming
to better understand the adaptive significance and
underlying processes shaping phenotypic variation
within and between species (Herrel et al., 1999,
2001a, 2010; Verwaijen, Van Damme & Herrel, 2002;
Husak et al., 2006; Huyghe et al., 2006; Lappin,
Hamilton & Sullivan, 2006; Herrel, McBrayer & Lar-
son, 2007; Lailvaux & Irschick, 2007; Measey, Hop-
kins & Tolley, 2009; Vanhooydonck et al., 2010;
Kaliontzopoulou et al., 2012).

In particular, variation in cranial morphology has
been closely associated with diet, which influences
feeding performance, further dietary habits, and,
ultimately, fitness (Findley & Black, 1983; Verwaijen
et al., 2002; Metzger & Herrel, 2005; Herrel et al.,
2008; Timm-Davis, DeWitt & Marshall, 2015). For
example, lizards with larger heads (longer, higher,
wider) typically benefit from an increased gape and/
or bite force (likely as a result of larger jaw adductor
muscles: Herrel et al., 1999; Herrel, De Grauw &
Lemos-Espinal, 2001b; Huyghe et al., 2009), which
has been associated with the consumption of larger
and harder/tougher prey items (Shine, 1989; Herrel
et al., 2001a; Verwaijen et al., 2002). This may help
broaden the spectrum of potential prey that individu-
als can consume, thereby alleviating competition for
resources. As such, an animal’s cranial morphology
is expected to show strong adaptations to its dietary
niche.

Chameleons consume relatively large prey com-
pared to other lizards (Broadley, 1973; Luiselli &
Rugiero, 1996; Pleguezuelos et al., 1999; Herrel
et al., 2000; Keren-Rotem, Bouskila & Geffen, 2006;
Measey, Raselimanana & Herrel, 2013). This is facil-
itated by their relatively high bite forces (Vanhooy-
donck, Herrel & van Damme, 2007) and associated
relatively large heads, which are equipped with bal-
listic tongues with strong tongue retractors muscles
(Herrel et al., 2001c, d; Higham & Anderson, 2013).
They are considered opportunistic cruise foragers
and adopt a foraging mode intermediate between
active and sit-and-wait foraging (Butler, 2005). They
acquire prey by scanning their environment, slowly
moving short distances, and scanning their environ-
ment again (Regal, 1978; Butler, 2005; Measey et al.,
2013), eventually capturing prey using their ballistic
tongues (Zoond, 1933; Wainwright, Kraklau & Ben-
nett, 1991; Wainwright & Bennett, 1992a, b; Herrel
et al., 2001d). This strategy enables them to encoun-
ter similar proportions of prey types available in
their arboreal habitat, which would classify them as
generalists (Measey et al., 2011, 2013; Carne & Mea-
sey, 2013). Behavioural observations have confirmed
this foraging mode in an invasive population of Trio-
ceros jacksonii in Hawai’i (Hagey, Losos & Harmon,
2010), as well as in the Cape Dwarf Chameleon,

Bradypodion pumilum (Butler, 2005). However, a
recent study analyzing the ingested prey of two eco-
morphs of B. pumilum found that the ‘closed habitat’
(woodland) ecomorph consumed more soft items and
less sedentary prey than the ‘open habitat’ ecomorph,
which consumed relatively equal proportions of soft
and hard, as well as sedentary and evasive prey
(Measey et al., 2011). Furthermore, the open habitat
ecomorphs possess a greater relative bite force com-
pared to their closed habitat counterparts, which is
facilitated by their proportionally wider heads (Mea-
sey et al., 2009), thereby enabling them to consume
harder prey. Taken together, these results indicate
that the degree of cruise foraging (and diet general-
ism) may be dependent on prey availability and
abundance, as well as cranial morphology and func-
tion, all of which are dependent on habitat type.

Extensive variation in head size and shape has
been documented in another group of dwarf chame-
leons: a radiation of dwarf chameleons from Kwa-
Zulu-Natal (KZN) Province, South Africa (da Silva &
Tolley, 2013; da Silva et al., 2014a). The radiation
comprises five phenotypic forms, two of which are
described species (Bradypodion melanocephalum and
Bradypodion thamnobates) and the remaining three
(Types A, B, and C) are designated as morphotypes
(Gray, 1865; Raw, 1976; Tolley & Burger, 2007; Til-
bury, 2010; da Silva & Tolley, 2013; da Silva et al.,
2014a). All forms are allopatric in distribution and
occupy different macro- and microhabitats (da Silva
& Tolley, 2013). Bradypodion melanocephalum and
Type A occupy open-canopy habitats (e.g. grass-
lands), which contain densely clustered, vertically-
oriented vegetation for chameleons to perch upon,
whereas B. thamnobates and Types B and C occupy
closed-canopy habitats (e.g. forests, transformed
shrubby landscapes) that contain broader perching
substrates arranged both vertically and horizontally.
These ecological differences were found to correlate
with functional differences in forefoot grip strength,
suggesting that the forms are adapted morphologi-
cally to their different environments (da Silva et al.,
2014b).

Given that variation in head size and shape was
found to explain the majority of the morphological
differences between forms, variation in bite perfor-
mance might also be expected (da Silva & Tolley,
2013). However, proportional differences in bite force
were only detected between the sexes and to varying
degrees, corresponding to the different levels of sex-
ual dimorphism between forms (da Silva et al.,
2014a). The lack of proportional differences in bite
force between forms could suggest that natural selec-
tion is weak or not acting to drive interspecific (‘in-
terform’) divergence in this performance trait.
Instead, sexual selection may be the predominant
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selective force influencing intersexual and interform
variation in head morphology within this radiation.
However, the bite force of each form and sex were
found to correlate with overall body size, with
larger chameleons (i.e. closed-canopy vs. open-
canopy, females vs. males) possessing a stronger bite,
as predicted under natural selection (da Silva et al.,
2014a). This is noteworthy given that, for many ani-
mals, body size is not only highly heritable (Peters,
1983), but also has been shown to be influenced by
ecological differences, such as diet (Asplund, 1974;
Fleming, 1991; Verwaijen et al., 2002; Herrel &
Holanova, 2008). Accordingly, dietary variation may
explain at least some of the morphological differences
found in head size and shape between these forms
and sexes.

To gain a better understanding of the relationship
between diet, cranial morphology and function, and
habitat in dwarf chameleons, we investigated the
dietary differences of chameleons within the B. me-
lanocephalum–B. thamnobates radiation. Based on
previously published data on head shape and biome-
chanical models of biting in lizards, we expected to
find clear relationships between dwarf chameleon
morphology, performance, and diet. First, we pre-
dicted that chameleons with wider and/or taller
heads, typically associated with a greater jaw closing
in-lever and bite force, would consume larger and/or
harder prey as part of their diet (Herrel, Aerts & De
Vree, 1998a, b; Herrel et al., 1999, 2001b; Metzger &
Herrel, 2005; Kohlsdorf et al., 2008). Because the
closed-canopy chameleons were found to possess lar-
ger heads across all dimensions measured, and
B. thamnobates and Type B chameleons, in particu-
lar, were found to possess harder absolute bite forces
(da Silva & Tolley, 2013; da Silva et al., 2014a), we
expected them to consume larger and/or harder prey
items than the open-canopy forms. Lastly, because
absolute differences in body size and bite force were
detected between the sexes, with females being lar-
ger and typically biting harder than males (da Silva
& Tolley, 2013; da Silva et al., 2014a), we expected
them to consume larger and/or harder prey compared
to males. To investigate these hypotheses, we quanti-
fied the stomach contents of dwarf chameleons from
each of the five phenotypic forms.

MATERIAL AND METHODS

ANIMALS

A total of 292 dwarf chameleons (147 females; 145
males) (Table 1) representing the five phenotypic
forms of the B. melanocephalum–B. thamnobates
radiation were sampled from 13 localities within
southern KZN (Fig. 1) during the summers of 2009

and 2010. Animals were collected at night and geo-
referenced using GPS coordinates recorded at the
point of capture. Marked flagging tape was placed on
the perch of each chameleon to indicate the exact
location where each chameleon was found. Each cha-
meleon was then placed in a separate cloth bag and
brought back to the field base overnight, where they
were stomach-flushed within 3–4 h of capture. Mor-
phological measurements and bite force readings
were obtained the subsequent day to minimize stress
to the animals (da Silva & Tolley, 2013; da Silva
et al., 2014a). Once all data were collected, animals
were released at their exact point of capture.

STOMACH CONTENTS

Gastric lavage was carried out in accordance with
the protocol described by Herrel et al. (2006). Water
was gently injected into the animal’s stomach using
a 500-mL syringe with a modified (30° bend) ball-
tipped steel attachment. The size of the tip and the
amount of water used (≤ 100 mL) was adjusted to
the size of the chameleon. The regurgitated contents
were captured in a sieve and forceps were used to
transfer the contents into vials with 99% alcohol.

The preserved stomach contents were blotted dry,
identified to the lowest possible taxonomic level
(mainly Order) sensu Picker, Griffiths & Weaving
(2002), and measured and weighed. The length and
width of all food items was determined using digital
callipers (Mitutoyo CD-6″ CPX; precision of
0.01 mm) in accordance with the protocol reported
by Carne & Measey (2013). The mass of each item
was determined using an electronic balance (SBA31,
Scaltec Instruments; precision of 0.1 mg).

In addition to the taxonomic diversity of stomach
contents, functional diversity was also assessed by
dividing items according to their hardness (soft,
intermediate, and hard) (Table 2). Prey items were
assigned to hardness categories based on extensive
testing of the actual forces needed to crush various
prey items (A. Herrel, unpublished data).

We estimated the hardness of each prey item using
regression equations (Verwaijen et al., 2002):

Hard: log10½prey hardnessðNÞ� ¼ 1:582� log10

½prey size (mm)� � 1:365

Intermediate: log10½prey hardnessðNÞ� ¼ 1:780� log10

½prey size (mm)� � 1:942

Soft: log10½prey hardnessðNÞ� ¼ 0:997� log10

½prey size (mm)� � 1:379

These equations were determined by the force
needed to rupture particular prey (Herrel et al.,

© 2016 The Linnean Society of London, Biological Journal of the Linnean Society, 2016, ��, ��–��

DIET AND DWARF CHAMELEON EVOLUTION 3



T
a
b
le

1
.
S
u
m
m
a
ry

of
m
or
p
h
ol
og

ic
a
l
a
n
d
p
er
fo
rm

a
n
ce

d
a
ta

fo
r
m
a
le

(M
)
a
n
d
fe
m
a
le

(F
)
d
w
a
rf

ch
a
m
el
eo
n
s
u
se
d
in

th
e
p
re
se
n
t
st
u
d
y
,
g
ro
u
p
ed

b
y
p
h
en

ot
y
p
ic

fo
rm

B
ra

d
yp

od
io
n

m
el
a
n
oc
ep

h
a
lu
m

T
y
p
e
A

B
ra

d
yp

od
io
n

th
a
m
n
ob

a
te
s

T
y
p
e
B

T
y
p
e
C

M
F

M
F

M
F

M
F

M
F

M
or
p
h
ol
og

y

n
3
8

2
6

2
9

3
3

4
2

5
6

2
5

1
8

1
0

1
4

M
a
ss

(g
)

2
.1
1
(0
.4
4
)

4
.1
8
(1
.1
9
)

2
.6
0
(0
.7
8
)

3
.0
8
(1
.7
1
)

6
.4
1
(3
.6
2
)

9
.2
7
(5
.7
2
)

6
.8
4
(3
.5
6
)

1
0
.1
4
(6
.6
0
)

2
.9
2
(2
.0
0
)

3
.8
3
(3
.1
4
)

S
V
L

(m
m
)

4
8
.8
1
(4
.5
4
)

5
5
.0
3
(4
.6
6
)

4
8
.9
1
(5
.9
3
)

4
9
.1
3
(8
.6
9
)

6
0
.5
7
(1
3
.2
8
)

6
8
.3
4
(1
4
.8
3
)

6
1
.7
4
(1
5
.0
3
)

6
6
.3
4
(1
9
.2
1
)

4
6
.3
4
(1
2
.5
0
)

4
8
.9
2
(1
3
.5
7
)

L
J
L

(m
m
)

1
1
.3
1
(1
.0
6
)

1
1
.3
9
(0
.9
1
)

1
2
.5
4
(2
.7
3
)

1
3
.5
1
(2
.3
0
)

1
4
.0
8
(3
.5
1
)

1
4
.0
1
(2
.5
3
)

1
1
.3
1
(2
.8
4
)

1
1
.1
2
(2
.5
8
)

1
1
.3
7
(2
.2
5
)

1
1
.0
3
(2
.0
4
)

H
L

(m
m
)

1
1
.6
4
(0
.8
3
)

1
1
.7
2
(0
.8
6
)

1
2
.6
3
(2
.0
8
)

1
3
.5
4
(2
.0
3
)

1
4
.0
1
(2
.6
8
)

1
4
.3
8
(2
.5
9
)

1
0
.2
4
(3
.0
5
)

1
2
.0
8
(2
.5
6
)

1
1
.9
1
(1
.7
4
)

1
1
.5
4
(1
.4
4
)

H
H

(m
m
)

6
.7
7
(0
.7
0
)

6
.7
6
(0
.5
3
)

8
.0
4
(1
.8
9
)

8
.5
4
(1
.6
4
)

8
.6
9
(1
.7
9
)

8
.8
0
(1
.6
9
)

6
.9
2
(1
.8
6
)

7
.1
2
(1
.5
4
)

7
.0
7
(1
.6
3
)

6
.7
8
(1
.4
2
)

H
W

(m
m
)

7
.4
2
(0
.5
6
)

7
.1
8
(0
.8
8
)

8
.7
2
(2
.2
4
)

9
.2
4
(2
.0
0
)

9
.9
4
(2
.5
1
)

9
.9
8
(2
.1
5
)

7
.6
3
(1
.9
9
)

7
.2
0
(2
.0
7
)

7
.6
1
(2
.0
5
)

7
.3
7
(1
.9
0
)

C
T

(m
m
)

8
.7
9
(0
.7
7
)

9
.0
4
(0
.6
8
)

9
.7
7
(1
.9
6
)

1
0
.4
9
(1
.6
2
)

1
0
.7
7
(2
.0
7
)

1
0
.9
6
(2
.0
5
)

8
.8
0
(2
.0
3
)

8
.3
9
(2
.2
7
)

8
.8
4
(1
.4
3
)

8
.7
0
(1
.4
9
)

Q
T

(m
m
)

1
0
.1
4
(0
.8
4
)

1
0
.2
3
(0
.6
8
)

1
1
.2
8
(2
.5
4
)

1
2
.0
0
(1
.9
7
)

1
2
.6
6
(2
.6
0
)

1
2
.7
5
(2
.5
3
)

1
0
.0
2
(2
.7
2
)

9
.8
9
(2
.2
5
)

1
0
.2
3
(2
.2
5
)

9
.8
7
(1
.9
2
)

In
L
_C

lo
si
n
g

1
.3
5
(0
.4
2
)

1
.1
9
(0
.4
4
)

1
.5
2
(0
.7
0
)

1
.5
0
(0
.5
3
)

1
.8
8
(0
.7
0
)

1
.7
9
(0
.6
8
)

1
.2
2
(0
.7
5
)

1
.5
0
(0
.9
8
)

1
.3
9
(0
.9
7
)

1
.1
7
(0
.5
8
)

In
L
_O

p
en

in
g

1
.1
7
(0
.4
5
)

1
.1
6
(0
.4
6
)

1
.2
6
(0
.5
2
)

1
.5
1
(0
.5
3
)

1
.3
7
(0
.5
8
)

1
.2
5
(0
.4
2
)

1
.2
9
(0
.6
5
)

1
.2
3
(0
.7
0
)

1
.1
4
(0
.5
9
)

1
.1
6
(0
.3
4
)

C
H

(m
m
)

4
.4
4
(0
.8
6
)

4
.6
9
(0
.7
1
)

6
.2
7
(2
.5
7
)

6
.5
4
(1
.9
0
)

7
.5
6
(2
.1
7
)

7
.8
8
(2
.1
8
)

5
.0
3
(1
.7
5
)

5
.0
9
(2
.0
7
)

5
.1
0
(1
.6
6
)

4
.6
4
(1
.0
5
)

C
H
L

(m
m
)

1
6
.4
3
(1
.3
8
)

1
6
.6
6
(1
.1
5
)

1
8
.7
5
(4
.2
6
)

2
0
.1
5
(3
.8
6
)

2
1
.6
4
(4
.4
0
)

2
1
.8
2
(4
.3
6
)

1
6
.2
4
(4
.3
7
)

1
6
.4
4
(4
.2
8
)

1
7
.0
5
(3
.4
4
)

1
6
.1
7
(3
.0
9
)

C
H
H

(m
m
)

9
.5
4
(1
.3
4
)

1
0
.1
1
(0
.9
7
)

1
2
.0
8
(4
.1
4
)

1
3
.1
5
(3
.1
0
)

1
4
.0
8
(3
.5
1
)

1
4
.6
6
(3
.6
1
)

1
0
.6
7
(2
.9
4
)

1
0
.7
9
(3
.1
0
)

1
0
.5
9
(2
.1
3
)

9
.9
6
(1
.6
9
)

P
er
fo
rm

a
n
ce

n
2
4

1
2

1
8

2
2

1
9

2
2

1
5

1
2

7
9

B
it
e
fo
rc
e
(N

)
0
.9
9
(0
.1
2
)

1
.0
9
(0
.1
6
)

1
.0
1
(0
.2
1
)

0
.8
9
(0
.2
6
)

1
.2
5
(0
.3
3
)

1
.2
7
(0
.3
7
)

1
.4
7
(0
.8
8
)

1
.5
1
(0
.1
5
)

0
.7
1
(0
.1
9
)

0
.8
3
(0
.3
6
)

S
ta
n
d
a
rd

d
ev

ia
ti
on

is
sh

ow
n
in

b
ra
ck

et
s.

S
V
L
,
sn

ou
t–
v
en

t
le
n
g
th
;
L
J
L
,
lo
w
er

ja
w

le
n
g
th
;
H
L
,
h
ea

d
le
n
g
th
;
H
H
,
h
ea

d
h
ei
g
h
t;

H
W
,
h
ea

d
w
id
th
;
C
T
,
sn

ou
t
le
n
g
th
;

Q
T
,
q
u
a
d
ra
te

to
sn

ou
t
ti
p
;
In

L
_C

lo
si
n
g
,
in
-l
ev

er
fo
r
ja
w

cl
os
in
g
(L
J
L
-Q

T
);
In

L
_O

p
en

in
g
,
in
-l
ev

er
fo
r
ja
w

op
en

in
g
(Q

T
-C

T
);
C
H
,
ca
sq

u
e
h
ei
g
h
t;

C
H
L
,
ca
sq

u
e
h
ea

d

le
n
g
th
;
C
H
H
,
ca
sq

u
e
h
ea

d
h
ei
g
h
t.

© 2016 The Linnean Society of London, Biological Journal of the Linnean Society, 2016, ��, ��–��

4 J. M. DA SILVA ET AL.



2001a). For all prey items, length was used for ‘prey
size’ when calculating hardness.

CRANIAL MORPHOLOGY AND PERFORMANCE

Morphometric and bite force data were taken from
previously published studies (da Silva & Tolley,
2013; da Silva et al., 2014a), only incorporating indi-
viduals involved in the gastric lavage described
above. The morphometric data included snout–vent
length (SVL) and nine head measurements (Fig. 2
and Table 1): casque head length, casque head
height, casque height, head length, head width, head
height, lower jaw length, snout length (measured
from the posterior surface of the coronoid process of
the mandible to snout tip), and quadrate-tip (mea-
sured from the posterior surface of quadrate bone to
the snout tip). From the latter three measurements,
two additional morphological variables were calcu-
lated: (1) in-lever for jaw opening and (2) in-lever for
jaw closing. The open in-lever is the distance
between the quadrate-tip and the snout length,
whereas the close in-lever is the subtraction of the

quadrate-tip length from lower jaw length (Metzger
& Herrel, 2005; Kohlsdorf et al., 2008; Barros, Herrel
& Kohlsdorf, 2011).

STATISTICAL ANALYSIS

All analyses were carried out using SPSS, version
17.0 (SPSS for Windows 17.0, 2008), and all data
(morphological, performance, maximal prey
dimensions) were log10-transformed prior to analy-
sis to fulfil assumptions of normality and
homoscedascity. After the log10-transformations, all
variables displayed a normal distribution. All sub-
sequent analyses used ordinary least squares
regressions.

Stomach contents
To investigate possible differences in the diet of
these chameleons, the quantity of prey consumed by
each phenotypic form and sex was compared using
an analysis of covariance. The model was run with
‘Phenotypic form’ and ‘Sex’ as the fixed factors, log10-
SVL as a covariate to control for the effect of size,

Figure 1. Photographs and general distributions of the five dwarf chameleon forms within the Bradypodion

melanocephalum–Bradypodion thamnobates radiation from southern KwaZulu–Natal Province, South Africa. Only male

forms are shown, although females resemble males in overall coloration (da Silva & Tolley 2013). Numbers indicate sam-

pling localities: 1, Durban; 2, Hilton; 3, Stirling Farm; 4, Howick; 5, Dargle; 6, Nottingham Road; 7, Boschhoek Golf

Course; 8, Boston; 9, Bulwer; 10, Kamberg Nature Reserve; 11, Highmoor Nature Reserve; 12, Sani Pass; 13, Karkloof.

Modified from da Silva et al. (2014b).
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and the square root of the ‘Number of prey items
found in each stomach’ as the dependent variable.

Given the presence of sexual dimorphism within
this radiation (da Silva & Tolley, 2013; da Silva
et al., 2014a, b), all subsequent analyses were car-
ried out separately by sex.

To understand the significance of a particular prey
item in the diets of the five phenotypic forms, a rela-
tive importance index (IRI) was calculated for each
prey type and functional group (Pinkas, Oliphant &
Iverson, 1971; Huysentruyt et al., 2004):

IRI ¼ ð%N þ%VÞ:%Oc:

where %N is the numeric abundance of a particular
prey type compared to the total abundance of all
prey items, %Oc is the frequency of occurrence of a
prey type (the number of individuals of a species that
consumed that prey type), and %V is the volumetric
percentage of the prey type for a given species. In
the present study, we replaced %V with %Mass.
Moreover, we calculated %IRI, which is the propor-
tion of IRI of each prey type (or functional group) in
relation to the total IRI value for a species.

The overlap in diet among the five phenotypic
forms was also calculated using Schoener’s D index
(Schoener, 1968), which is defined as:

DAB ¼ 1� 0:5:
X

j%NA �%NBj

where %NA and %NB are the proportional numeric
abundances of a particular prey type for species A
and B, respectively. D values range between 0 (when
no food is shared) and 1 (when there is the same pro-
portional use of all prey items), with values > 0.6
considered as biologically significant (Wallace, 1981;
Wallace & Ramsay, 1982).

Correlations between morphology, performance, and
diet
To take into account the possible dependences between
body size and head shape, performance and prey char-
acteristics, all of these data were regressed against
log10-SVL and the unstandardized residuals saved for
use in subsequent analyses when these regressions
gave significant results. Although studies have shown
that the head can develop at a different rate than over-
all body size (Bra~na, 1996; Kratochv�ıl et al., 2003), this
was not found to be the case for these chameleons (da
Silva & Tolley, 2013; da Silva et al., 2014a). All vari-
ables were found to share a common growth axis and
follow similar trajectories. Moreover, principal compo-
nent analyses, carried out separately by sex, revealed
that all variables fit within a single principal compo-
nent, with log10- SVL possessing the highest component
score (males: 88.9%; females: 90.4%), validating its use
as a suitable covariate (McCoy et al., 2006).

Because extensive morphometric and performance
analyses have already been conducted on this dataset
(da Silva & Tolley, 2013; da Silva et al., 2014a, b),
ontogenetic changes in body size and shape, as well as
its influence on bite performance, were not re-exam-
ined. Instead, the morphometric and performance
variables were solely used to investigate their associa-
tion with diet among the five phenotypic forms.

To investigate the relationship between morphol-
ogy, performance, and diet, we first regressed the
log10-transformed maximal prey dimensions (width
and mass) and hardness variables against log10-SVL.
Because of its contribution to the calculation of prey
hardness, prey length was not included in this analy-
sis, nor any subsequent analyses involving prey
characteristics. For the regressions showing a signifi-
cant association, the unstandardized residuals were
extracted and saved for use in subsequent analyses.
Multivariate analyses of variance (MANOVAs) were
then conducted on the unstandardized residuals to
test for differences between the five phenotypic
forms. P-values were subjected to Holm’s sequential
Bonferroni (Holm, 1979) correction to minimize the
possibility of Type I errors (Rice, 1989).

Next, we investigated the relationship between
head shape and diet to determine whether the same

Table 2. Classification of each prey type according to

hardness level

Stomach contents Prey hardness

Invertebrata

Araneae Soft

Blattodea Soft

Chilopoda Soft

Coleoptera (adults) Hard

Coleoptera (larva) Soft

Collembola Soft

Diplopoda Intermediate

Diptera Soft

Gastropoda (snails only) Hard

Hemiptera Intermediate

Hymenoptera (excluding Formicidae) Hard

Hymenoptera (Formicidae) Hard

Isopoda Intermediate

Lepidoptera (adult) Soft

Lepidoptera (larva) Soft

Mantodea Soft

Mecoptera Soft

Opiliones Soft

Orthoptera Intermediate

Other

Vegetation Hard

© 2016 The Linnean Society of London, Biological Journal of the Linnean Society, 2016, ��, ��–��
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morphological variable or combination of variables
best explains the dimensions and hardness of prey
consumed by each phenotypic form. To do this, we
extracted the residuals of the regressions of head
dimensions and introduced them into stepwise multi-
ple regression models, with the maximal prey dimen-
sions (width, mass) and hardness as the dependent
variables.

Finally, we tested whether bite force also explained
variation in prey characteristics by conducting regres-
sion analyses using both log10-transformed (absolute)
and residual (relative) bite force as the independent
variables and prey width, mass, and hardness as the
dependent variables. For analyses involving relative
bite force, all variables (dependent and independent)
were size-corrected against log10-SVL.

RESULTS

STOMACH CONTENTS

Of the 292 chameleon stomachs examined, five
(1.71%) were empty. Of the remaining 287 stomachs,

no differences were found in the quantity of prey
consumed by each form (F4,272 = 0.950; P = 0.436);
however, differences were detected between the sexes
(F1,285 = 4.691; P = 0.031), with Bonferroni post-hoc
tests revealing that closed-canopy females consume
more prey items than closed-canopy males (Fig. 3).
No differences were detected between the sexes
within the open canopy forms.

These chameleons were found to prey on an assort-
ment of 20 different invertebrate Orders (Table 1;
see Supporting Information, Table S1); however, four
Orders predominated (Table 3): Hemiptera, Dipetra,
Isopoda, and Araneae. Hemiptera and Diptera were
amongst the top two prey types within four forms
(B. thamnobates and Types A, B, and C). For B. me-
lanocephalum, Hemiptera and either Isopoda or Ara-
neae were amongst the most important prey items
for females and males, respectively.

An analysis of prey types according to their hard-
ness (Table 2) showed that females consumed prey of
equal or lower hardness than males, and that all
forms predominantly ate soft or intermediately hard
prey (Table 4).

Figure 2. Nine head measurements recorded for each chameleon. Images on the left are based on a microtomography

scan (courtesy of R. Boistel, Universit�e de Poitiers). CT, snout length; QT, quadrate-snout tip; HW, head width. Repro-

duced with permission from da Silva et al. (2014a).
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Comparing the dietary overlap between the five
forms revealed that the diets of Type B chameleons
are most dissimilar to those of the other phenotypic
forms, except for B. thamnobates (Table 5), likely as
a result of the vast predominance of Diptera in their
diets (Table 3). The diets of B. thamnobates showed
significant overlap with all other forms (Table 5), as
a result of the presence of all but two prey types in
its diet: Chilopoda (centipedes) and Diplopoda (milli-
pedes) (Table 3). The diets of B. melanocephalum
and Type A males showed complete overlap
(Table 5).

CORRELATIONS BETWEEN MORPHOLOGY,
PERFORMANCE, AND DIET

For both males and females, prey width and hard-
ness were found to correlate positively and signifi-
cantly with SVL (Table 6). Accordingly, the residuals
of these characteristics against SVL were used in the
MANOVAs to test for differences in prey characteris-
tics between forms: no differences were detected in
either sex (males: Wilks’ k = 0.861; F4,138 = 1.275;
P = 0.222; females: Wilks’ k = 0.856; F4,145 = 1.383;
P = 0.146).

Stepwise multiple regression models using residual
head dimensions as the independent variables and
prey width, mass, and hardness as the dependent
variables identified significant correlations for each
phenotypic form. However, no single morphological
variable was found to best predict all prey

characteristics within and across forms (Table 7).
Snout length was the only variable found to explain
prey hardness among B. melanocephalum males,
showing a direct relationship, whereas a combination
of variables was typically found to explain prey char-
acteristics within the other forms. Only Type B
males showed significant morphological correlations
for all three prey characteristics. No correlations
were detected for open-canopy females (B. me-
lanocephalum and Type A) and B. thamnobates
males.

Regression analyses showed no relationship
between relative bite force and prey characteristics
(0.099 ≥ P ≤ 0.699); however, relationships were
detected when absolute bite force was used as the
independent variable, with the bite of both males
and females showing positive and significant associa-
tions with all three prey characteristics, indicating
that body size strongly relates to prey choice of these
chameleons (Table 8). The subsequent MANOVA and
Bonferroni post-hoc test used to determine which
forms were contributing to these results revealed
fewer significant associations (Females – mass, hard-
ness; Males – mass) (Table 8). These were attributed
to Type A chameleons generally consuming smaller
(in mass) and softer prey for a given bite force com-
pared to all other phenotypic forms (Fig. 4).

DISCUSSION

Although we predicted that differences in head size
and shape within the B. melanocephalum–B. tham-
nobates radiation would result in dietary differences
between the morphological forms, our analyses did
not detect significant differences between them. The
closed-canopy chameleons, B. thamnobates and Type
B, which possess larger heads across all dimensions
measured, as well as harder absolute bite forces (da
Silva & Tolley, 2013; da Silva et al., 2014b), did not
consume larger or harder prey than the open-canopy
forms. We also predicted that females would con-
sume larger and harder prey than males as a result
of them being larger and biting harder; however, no
differences were detected between the sexes within
the open-canopy forms, and closed-canopy females
typically consumed softer prey or prey of equal hard-
ness.

Overall, the phenotypic forms within this radiation
exhibited dietary overlap, which, initially, appears to
suggest that natural selection is not driving differ-
ences in head morphology and function between phe-
notypic forms. However, closed-canopy females were
found to consume more prey items than males. Con-
sidering that females tend to possess a greater abso-
lute body size, overall (da Silva & Tolley, 2013), this

Figure 3. Error plot depicting differences in mean prey

abundance across each phenotypic form and sex within the

Bradypodion melanocephalum–Bradypodion thamnobates

radiation. Filled circles: males; open circles: females.
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result may suggest that closed-canopy females
require a greater caloric intake than their male
counterparts, which is potentially related to their
larger body size and fitness. To confirm this, an
assessment of the caloric value of all prey types
would need to be undertaken.

The lack of support for dietary differentiation
between phenotypic forms was surprising given that
such differences may be expected where chameleons
inhabit different habitats and/or vary in body size
(Akani, Ogbalu & Luiselli, 2001; Measey et al.,
2013), both of which are characteristics of this

Table 4. Diet composition in terms of hardness and evasiveness within each of the five phenotypic forms

N

Females

N

Males

Hardness Hardness

Soft Intermediate Hard Soft Intermediate Hard

Open-

canopy

Bradypodion

melanocephalum 26

NS 19 25 19 38 39 37 25

NI 57 132 45 100 241 54

Mass (mg) 423.60 11806.90 315.80 916.70 938.20 211.30

%IRI 11.20 80.01 8.79 37.47 54.29 8.24

Type A 33

NS 31 26 18 27 25 23 19

NI 118 123 46 68 124 44

Mass (mg) 667.17 487.10 163.40 450.40 339.90 108.80

%IRI 52.37 38.21 9.42 42.56 44.83 12.60

Closed-

canopy

Bradypodion

thamnobates 55

NS 55 46 41 39 35 28 16

NI 257 140 105 128 85 32

Mass (mg) 5201.90 1363.69 1334.73 1570.01 674.38 471.40

%IRI 63.96 20.64 15.40 64.14 27.75 8.10

Type B 17

NS 16 12 11 25 24 18 14

NI 111 31 28 109 33 32

Mass (mg) 3205.30 541.50 662.10 6741.00 333.40 635.20

%IRI 75.60 12.53 11.86 81.97 9.54 8.48

Type C 14

NS 14 12 9 10 10 10 9

NI 74 50 20 39 51 24

Mass (mg) 755.72 453.30 128.40 140.80 3193.10 91.20

%IRI 59.35 32.35 8.31 21.37 66.75 11.89

NS, number of stomachs; NI, number of items; IRI, relative importance index; %IRI, proportion of IRI of each prey func-

tional group in relation to the total IRI value for a phenotypic form. Detailed dietary information on each prey type used

to calculate the %IRI is provided in the Supporting information (Table S1).

Bold values highlight the predominant prey functional group for each sex and form.

Table 5. Schoener’s index values of dietary overlap between the five phenotypic forms of the Bradypodion melanocepha-

lum–Bradypodion thamnobates radiation, separated by sex.

Females

Bradypodion melanocephalum Type A Bradypodion thamnobates Type B Type C

Males Bradypodion

melanocephalum

– 0.75 0.67 0.47 0.66

Type A 1.00 – 0.74 0.52 0.75

Bradypodion

thamnobates

0.68 0.72 – 0.70 0.81

Type B 0.53 0.58 0.76 – 0.60

Type C 0.54 0.52 0.57 0.57 –

Bold values highlight biologically significant dietary overlap between pairwise comparisons.

© 2016 The Linnean Society of London, Biological Journal of the Linnean Society, 2016, ��, ��–��
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Table 6. Relationships between snout–vent length and prey dimensions and hardness for the top prey items of chame-

leons in the Bradypodion melanocephalum–Bradypodion thamnobates radiation

Females Males

r2 Slope Intercept F P r2 Slope Intercept F P

Prey width (mm) 0.153 0.582 –0.539 26.010 < 0.001 0.084 0.446 �0.326 12.547 0.001

Prey mass (g) 0.133 1.829 �1.855 22.003 < 0.001 0.038 1.121 �0.738 5.436 0.021

Prey hardness (N) 0.161 1.002 �2.127 27.600 < 0.001 0.076 0.879 �1.917 11.339 0.001

Table 7. Results of the stepwise multiple regression models used to predict the morphological variables that best

explain prey dimensions and hardness

Phenotypic form Prey characteristic

Females Males

Model r2 P Slope Model r2 P Slope

Bradypodion

melanocephalum

Width (mm)

Mass (mg)

Hardness (N) CT 0.131 0.025 3.277

Type A Width (mm)

Mass (mg) CHL

HL

0.208 0.048 �8.353

12.259

Hardness (N)

Bradypodion

thamnobates

Width (mm) HL

LJL

0.170 0.007 1.906

�2.014

Mass (mg)

Hardness (N) HL

HW

0.124 0.030 2.125

�1.360

Type B Width (mm) HL

CHL

0.641 < 0.001 1.583

�1.533

Mass (mg) InL_Opening 0.322 0.003 1.939

Hardness (N) CHH 0.431 0.004 �1.653 HL

CHL

0.545 < 0.001 2.318

�1.224

Type C Width (mm) HL 0.461 0.031 �1.253

Mass (mg) HW

CHL

0.595 0.007 �5.723

5.987

HH 0.706 0.002 �5.532

Hardness (N) InL_Closing 0.360 0.023 �0.654

LJL, lower jaw length; HL, head length; HH, head height; HW, head width; CT, snout length; InL_Closing, in-lever for

jaw closing (LJL-QT); InL_Opening, in-lever for jaw opening (QT-CT); CHL, casque head length; CHH, casque head

height.

Table 8. Regression analyses examining the relationship between absolute bite force and prey characteristics

Prey

characteristic

Females Males

r2 Slope Intercept P r2 Slope Intercept P

Width 0.337 0.489 0.494 < 0.001 0.243 0.476 0.467 < 0.001

Mass 0.267 1.718 1.422 < 0.001* 0.183 1.429 1.323 < 0.001*

Hardness 0.219 0.764 -0.375 < 0.001* 0.137 0.832 -0.368 0.001

*Denotes significant associations after Bonferroni correction.

© 2016 The Linnean Society of London, Biological Journal of the Linnean Society, 2016, ��, ��–��

DIET AND DWARF CHAMELEON EVOLUTION 11



radiation. This is because, in novel habitats, lizards
may be faced with different dietary resources and,
consequently, may need to adapt to their new envi-
ronments through changes in their external head
morphology, as well as their internal digestive sys-
tems (Herrel et al., 2008). However, many studies
investigating patterns of diet utilization and selec-
tion in lizards have reported an overall similarity in
the diets of related species (Kaliontzopoulou et al.,
2012). Even closely-related sympatric species, which
theory suggests are able to coexist by partitioning
dietary resources (Hutchinson, 1959; Hardin, 1960;
Pianka, 1973; Schoener, 1974), often show largely
overlapping diets, indicating little selection for diver-
gence in dietary patterns (Herrel et al., 2001a;
Sutherland, 2011). Indeed, most lizards are food gen-
eralists and include a large variety of prey in their
diets (Greene, 1982). The dwarf chameleons exam-
ined in the present study appear to fit this general-
ization.

Because chameleons are opportunistic cruise for-
agers, they should encounter similar proportions of
soft, intermediate, and hard prey that are available
in their habitat (Measey et al., 2011, 2013; Carne &
Measey, 2013). If this is the case, the data suggest
that there is limited abundance of hard prey types
within each habitat. Alternatively, these results
could suggest that there is a seasonal effect of cer-
tain prey types in particular habitats and/or that
chameleons are exhibiting dietary preferences or
avoidances (refer to Measey et al., 2011; Carne &
Measey, 2013). For example, a recent study examin-
ing the foraging behaviour of Bradypodion ventrale
and Bradypodion taeniabronchum found that both
chameleons were more likely to take hard prey in
winter, when there was a clear reduction in the
availability and volume of prey. However, in sum-
mer, both species avoided hard prey items. If there is
a seasonal effect on prey within the habitats of the
B. melanocephalum–B. thamnobates radiation, then

Figure 4. Regression plots showing significant correlations between absolute bite force and prey characteristics

for the five phenotypic forms within the Bradypodion melanocephalum–Bradypodion thamnobates radiation. Yellow,

B. melanocephalum; blue, B. thamnobates; orange, Type A; green, Type B; maroon, Type C.
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any constraints in food availability that act on head
morphology may not necessarily be seen in summer.
A detailed survey of the available invertebrate diver-
sity in each habitat, as well as chameleon diet, dur-
ing different seasons would need to be undertaken to
test these hypotheses.

Despite the general absence of dietary differences
between phenotypic forms within this radiation, posi-
tive correlations between head morphology, absolute
bite force, and prey size (mass and hardness) were
detected within all but Type A chameleons, highlght-
ing the functional importance of overall head size in
prey acquisition, similar to that found for two eco-
morphs of B. pumilum (Measey et al., 2011). How-
ever, if the associations of bite force and prey size
are only by-products of head or body size, then what
do the differences in cranial morphology between
forms actually indicate and what is driving its evolu-
tion? According to current evidence, habitat is likely
to be the most significant factor shaping variation
within this radiation, along with the associated influ-
ences from natural and sexual selection (da Silva &
Tolley, 2013).

Currently, the five phenotypic forms are allopatric
in distribution and occupy habitats that differ at
both macro- and microscales (da Silva & Tolley,
2013). However, according to a biogeographical study
investigating the relationship between palaeoclimatic
fluctuations and cladogenesis within Bradypodion,
the ancestral habitat for these chameleons is consid-
ered to be forest (Tolley, Chase & Forest, 2008). Sub-
sequent to the Plio-Pleistocene transition
approximately 2–3 Mya, these chameleons have
become spatially displaced, with some forms retain-
ing the ancestral, forested habitat (B. thamnobates
and Types B and C) and others progressing into open
habitats (B. melanocephalum and Type A). This spa-
tial displacement and the associated differences in
macro- and microhabitats, which primarily involve
differences in their exposure to predators and com-
munication ability, resulted in different selective
pressures acting upon these chameleons. Sexual
selection appears to be the predominant force within
the closed-canopy habitats, driving the development
of conspicuous secondary sexual characteristics, such
as a proportionally larger head and casque, which
results in a greater absolute bite force (da Silva &
Tolley, 2013; da Silva et al., 2014b). These features
better enable chameleons to communicate to con-
specifics from a distance, reducing the need for con-
frontations, which can be harmful, especially male–
male encounters (Stuart-Fox et al., 2006; Tolley &
Burger, 2007). Natural selection, on the other hand,
appears to be the dominant force driving the appear-
ance of open-canopy chameleons. Open-canopy habi-
tats are more exposed to aerial predators compared

to the closed-canopy forests (Measey et al., 2013).
Consequently, the need to communicate to con-
specifics is outweighed by the need to avoid preda-
tion, thus explaining the diminutive size (in both
absolute and relative terms) of B. melanocephalum
and Type A chameleons and their weaker bite forces
(da Silva & Tolley, 2013; da Silva et al., 2014b).
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